Image Data Base on a microscopy facility: Deployment and Examples of projects

Perrine Paul-Gilloteaux, PICT-IBISA UMR144 Institut Curie CNRS Paris
Needed at the local level

→ a production of images over 4 years from 400 to 500 TB to archive, with an annual average of 100 TB to store redundantly,
→ produced by ~30 microscopes (photonic and electronic) with different formats,
→ around 250 users in Curie and external.
→ Projects from tissue, developmental biology, single cells studies, cellular and subcellular dynamics, molecular dynamics
But also at the international level

real need expressed at the national and international level (mostly externally financed by FBI, Canceropole, …)

PICT-IBISA -> opened to external users.
+ EUROBIOIMAGING

Users come to acquire image, could need help on processing or need microscopy expertise and comments.

Images of different sites in the same project

Need expertise on analysis on images not acquired on the facility
Solution prospect (evaluated in 2010: new evaluation will be run in IPDM-BioimageInformatic node FBI)

Objectives: (full specifications available on demand + summarized on the website)

1. Data Management simplification, No loss of data,
2. No duplication of data
3. Quota management
4. Easiness of access to external facility users
5. To exploit previously acquired data, Helping to set up a quality process
6. Server of application

Free and Open source: OMERO (main actor in 2010); BISQUE (UCSB) (process oriented); (now also WIDE Montpelier)

Need time and resources + maintainability (no backward compatibility)+ duplication of data.

Missing features--> rapid development needed + EVOLUTIVE and SCALABLE

--> looking for an industrial partner:
Audit of several companies (Visiohost, Sisncom, ImageAccess, Glencoe(omero), Strand) and selection on specification based-criteria. HCS --> closed systems.
Deployment plan

2010-2011
Planning work
• Specifications writing
• Solution prospect
• Partner selected: Strand Scientific Intelligence

November 2011 to January 2012
Prototype
• Minimal specifications
• Strand development, scaling to Curie

From 01/02/2012
Pilote
• 37 users including 3 externals
• 32 projects created, individual or collaborative
• 9 Microscopes + 1 post processing sur 4 sites (video, Spinning, confocal, Electronique,...)
• FurtherSpecifications/reflexion on content.

From end of 2012
Mise en place à l’échelle Curie
• User training + ACCESS WORKLOW
• Opening access from internet
• Evolution specifications
• Setting up tools for application deployment (third parties and publisher)

2012/2013/2014
Evolution: serveur d’application
• Routine use algorithm NdSafir denoising, deconvolution, tomographic reconstruction... + seg/tracking
• Integration of local pipeline
• Integration of results/new pist of reflexion

Actors
• PICT-IBISA facility
• IT department Curie
• Strand Scientific Intelligence

+ users (Curie and externals)
Image data base

STORAGE

Images Server + Metadata + annotations (manual or analysis results)/
attachments (publications, xls file...)

Acquisition Client
Web Client
Interface
Web admin for project managing

Processing batch of images on cluster (denoising, deconvolution, ...)

Automatic analysis without full download,
Data fusion,
advanced visualisation

Dynamic Organisation,
Visual search or advanced search functionalities

Metadata (pixel size, acquisition time,...) annotations,
Parsing nD images
Insuring reproducibility by storing all processing
2 level of processing integration

Example: integration of NdSafir denoising

From 3rd party software: ICY, fiji, matlab (via java), c++ via JNI
Examples of On going Projects:

→ Eurobioimaging: (4 proof of concept studies)
Beads for dual view registration
Images were batch registered without download in ImageJ, and result was uploaded from ImageJ.
Examples of Ongoing Projects: (collaboration with former post doc in NY on ongoing publication)
Correlative microscopy
Not a storage and image management tool: A R&D tool. Example of on-going project.

malaria parasite invasion in the mosquito tissues
Gloria Volohonsky
IBMC Anopheles group
Unistra
Elena Levashina
Max Planck Institute for Infection Biology
malaria parasite invasion in the mosquito tissues

- Proteins attacking the parasite in mosquito LRIM, APL1, TEP 1 (hemocyte)

- Species of mosquito:
 - G12 (India)
 - DSX and HYPER (African)

- Marker of damaged cells: Sugar Dextran, or hyper protein becoming fluorescent when bound to H2O2 or with OPH changed.

- Different time of infection, different times post infection.

Questions to answer:

- Parasite going out the gut wall: rate and proportion against different time?
- Is there any shape factor of the mosquito as an additional parameter?
- Inside the midgut: which are the mode of displacement of the parasite among cells? (assumption: the defense of cells attempting to eject the parasite would actually trigger the displacement)
malaria parasite invasion in the mosquito tissues

Goal: constructing an averaged model of the behavior of malaria parasite in mosquito from Imaging ex-vivo parasites in live midguts

- Static analysis (criteria based on segmentation)
- Temporal analysis in smallest time scale (1 to 2 hours, every minute) (criteria based on tracking)
- Combination and Analysis of results over time (highest time scales, time of infection)

200Gb
Around 150 raw acquisitions + results

Data driven statistical model
Data are annotated. Results of processing at the record level are uploaded by the processing algorithm.
Annotation automatically created can also be visual.
Information at the object level (here parasites and cells)

Parasites trajectories, shape factor and distance to nuclei pattern, cells invaded

Invaded cells trajectory (with motion compensation) and dextran response
Perspectives

Evolutive tool in a collaboration framework with Strand Life Sciences

In particular:
Integration of image processing tools, creation of typical local workflows, … integration with electronic labbook…

Integration (association) with other databases
-> toward real integrative exploitation of data
Acknowledgements

PICT-IBISA
Jean Salamero

Pict@Bdd:
Olivier Renaud
Olivier Leroy
Tristan Piolot

Pict@Orsay
Fabrice Cordelières
Pauline Chabosseau

Pict@Lhomond+NIC
Vincent Fraisier
Lucie Sengmanivong
François Waharte
Jérôme Boulanger

IT department
Sébastien Goud
Jean-Gabriel Dick
Camille Barette

Nimisha Gupta
Anup Kulkarny
Arunhaba Gosh
Thiru Reddy
Devendra
…

Pict@Pasteur
Patricia Le Baccon

Pict@Orsay

Macroscale Imaging, Pict@Curie: Olivier Leroy, Tristan Piolot,
Pict@Pasteur, Patricia Le Baccon, Pict@Orsay, Fabrice Cordelières,
Pauline Chabosseau, Pict@Lhomond, Vincent Fraisier, Lucie Sengmanivong,
François Waharte, Jérôme Boulanger, Pict@Bdd, Olivier Renaud,
Sébastien Goud, Jean-Gabriel Dick, Camille Barette, Nimisha Gupta,
Anup Kulkarny, Arunhaba Gosh, Thiru Reddy, Devendra

Serpico team (Inria):
Charles Kervrann
Tristan Lecorgne

Malaria parasites in mosquito gut project:
Gloria Volohonsky
IBMC Anopheles group Unistra
Elena Levashina
Max Planck Institute for Infection Biology

France-BioImage
Nœud Paris Centre + Nœud Bio Image Informatics (ex-IPDM)