# MRI guided Therapies: seeing what you treat





Universitair Medisch Centrum Utrecht

Chrit Moonen

#### **Interventional radiology**



- Vascular interventions
- Image guided biopsies
- Image guided drug infusion
- Tumor ablation
  - Radiofrequency
  - Microwave
  - Laser
  - High Intensity Focused Ultrasound (HIFU)
    - US guided HIFU
    - MRI guided HIFU

# **MRI** guided **High Intensity Focused Ultrasound (HIFU) University Medical Center** Utrecht PC **MRI with HIFU** anatomy and temperature mapping A STATISTICAL DATA thermo-therapy position and power control

**TRANSDUCER** 



# MRI guided Focused ultrasound: clinical applications

## Patient 1 (Uterine Fibroid) 20/11/2008, Philips/CHU Bordeaux (Pr Trillaud



#### Before

#### **HIFU** Ablation



#### After

### Radiotherapy



- Standard-of-Care for many types of cancer
- High-Precision Treatment (Gamma-knife, linear accelerator, proton beam)
- Pre-planning is image guided
  - Definition of Gross Tumor Volume (GTV)
  - Definition of Clinical Target Volume (CTV)
  - Identification of Organ At Risk (OAR)
- Until now, treatment itself is not (real-time) image guided
- Mobile organs are generally not treated with RadioTherapy
- Modern RadioTherapy moves towards real-time image guidance (US, X-ray, MRI)

### MRI offers superb soft tissue visualization





### Real time breathing related motion





#### irregular breathing von Hippel Lindau kidney tumour

### **Breathing related motion**





#### irregular breathing von Hippel Lindau kidney tumour

New 3D T2-FFE sequence with unique potential lymph nodes breast cancer patients



- 3D T2-FFE with some intrinsic diffusion weighting, fat suppression and black blood imaging
- Resolution 0.7x0.7x1 mm
- Geometrically correct, targeting 1.5 T MRL
  brachial plexus



T2-FFE MRI axillary lymph nodes

### **Vision: MRI guided Therapy**



- With MRI we see the GTV and we can follow/track tumours
- The GTV is hard to track with present day radiotherapy
- Tumour infiltrations are relatively well visualized
- We want to use the actual MRI to better track the GTV and spare OAR

Conclusion UMCU: MRI guided cancer treatment, **seeing what you treat** 

#### **Outline**



- MRI guided RadioTherapy
- MRI guided Focused Ultrasound
- Image Guided Chemotherapy
- Center for Image Guided Oncological Interventions

#### **Outline**



- MRI guided RadioTherapy
- MRI guided Focused Ultrasound
- Image Guided Chemotherapy
- Center for Image Guided Oncological Interventions

# Volumetric MR-HIFU ablation of breast cancer using a dedicated breast platform



- Phase 1 study on patients with pathologically proven invasive breast cancer (n=10)
  - Feasibility study to assess safety and treatment accuracy in patients with breast cancer
- Treat-and-resect protocol
  - Surgery between 48 hours and one week after HIFU treatment
- Sentinel lymph node procedure
  - Peritumoral injection of radioactive colloid just before surgery
  - Detection during surgery

# **Dedicated breast MR-HIFU system**



#### "Conventional" approach



# Dedicated system with lateral sonication



transducer top view

### **Dedicated breast platform** Sonalleve Breast MR-HIFU





Table top without covers



Water box with transducer and motors



Close-up of breast cup, singleelement RF coil, and transducer

#### **Results: 3 Tesla MRI**





#### **Results: MR-HIFU**







#### **Results: after MR-HIFU ablation**



- Minimal pain after MR-HIFU ablation
- Lumpectomy three days after MR-HIFU ablation
  - Detection of sentinel lymph node
  - No damage to pectoral muscle
- Pathology
  - No macroscopic or microscopic changes visible in tumor tissue (patient 1)
  - Macroscopic changes visible in tumor tissue (patient 2) with diameter corresponding with thermal dose threshold

#### **Outline**



- MRI guided RadioTherapy
- MRI guided Focused Ultrasound
- Image Guided Chemotherapy
- Center for Image Guided Oncological Interventions

# Development of the ultimate MRI targeting system for RadioTherapy



- Diagnostic quality MRI
- Targeting accuracy 0.5-1 mm
- On line/intrafraction/breathing
- Therapy plan update continuously
- Dose accumulation
- High dose rate
- Good IMRT properties (penumbra, scatter, transmission)
- Fast MLC



#### Concept of MRI accelerator





### **Principle of active B field shielding**







#### **Radiation windows**



Present design: field 24 cm long x 40 cm wide

#### **Specifications MRI accelerator**



- 1.5 T diagnostic MRI
- 6 MV linac
- Simultaneous irradiation and MRI
- Continuously rotation
  - Both directions
  - 10 RPM
  - 0.1 degree accuracy
- 1 mm spherical volume as target
- MLC Field size 24x56 cm2
  - 7 mm leaves at isoc



#### Philips and Elekta go MRI



- Tumor characterization
- MRI simulation: delineation
- MRI guidance
  - MRI treatment guidance external beam
- MRI treatment response assessment

#### **Outline**



- MRI guided RadioTherapy
- MRI guided Focused Ultrasound
  - Liver- preclinical (large animal)
- Image Guided Chemotherapy
- Center for Image Guided Oncological Interventions

### Magnetic Resonance guided HIFU of liver and kidney



#### Challenges

- 1. motion:
  - Artifacts in MRI thermometry
  - Target tracking/gated HIFU
- 2. Presence of ribs
  - Block propagation of HIFU
  - Burn risk in and around ribs
- 3. Highly perfused organs
  - Cooling due to flow/perfusion
  - High HIFU energy deposition
  - Burn risk in near and far field

### MRgHIFU for cancer therapy: Challenges for HIFU in the liver



#1: Respiratory motion



- Motion Tracking:
  - MRI
  - Ultrasound
- HIFU guidance
  - Beam steering
  - Gated sonication

### **MRgHIFU for cancer therapy: Challenges for HIFU in the liver**



#### #1: Respiratory motion

#### Abdomeopticateflow based image registration in a separatory motion this is Breater the strategy based image registration up the current target of the attack of the second second



**Reference Position** 







Update focal point position



#### **Towards clinical MR-HIFU** treatment in the liver







• Inter-costal firing

Treatment

- Respiratory motion compensation
- Temperature feed-back control

#### TemperatureMapping 6.1 (2.6.2012.14;24;35)77) TemperatureMapping 6.1 (2.6.2012.14;24;35)77) Control Stack B TemperatureMapp

Liver ablations under clinical conditions

### **Continuous sonication with gated thermometry**





#### **Reference: gated sonication**





- adapted duration to duty-cycle
- isotropic shape

#### layered structures in beam-path strongly heated $\rightarrow$ oedema! (all sonications)



Center

### **Power calibration animal 4**



#### What about the 8mm 349W sonication?



#### sdyn time series once (8/15/2012 1:32:50.66 PM) Gd-enhanced contrast

Monitor Stack A Treatment Cell Cluster 2



#### **Case study: Larger volume ablation**





→ feasible for unobstructed, shallow shot

- ablation of region with 10mm diameter
- location: 35mm from skin, 12mm inside liver
- 7 cells @ 4mm
- cooling time between shots > 10 min
- check for oedema withT2 while waiting

### Larger volume ablation: pathology puzzle











#### **Intercostal-firing: The problem**





MRI / CT based preplanning tools



# Treatment simulations for patient selection

#### **Geometric Shadow**





#### **Intensity-based thresholding**



- Shadow casting ignores transmission characteristics
  - 'Blocked' elements can contribute to focus

• 'Unblocked' elements can expose the ribs

#### **Element Directivity Pattern**



10% of focus intensity @ |x| = 6mm



#### **Geometric Shadow**

#### Pro

- Fast
- Relatively Simple

#### Contra

- Requires rib segmentation
- Weak correlation with

#### exposure







#### **Intensity-based switch-off**

#### PRFS Thermometry @ rib level

# Thermocouple measurements



No Rib Protection

#### Intensity Threshold

#### **Outline**



- MRI guided RadioTherapy
- MRI guided Focused Ultrasound
- Image Guided Chemotherapy
- Center for Image Guided Oncological Interventions





Planning, real-time guidance, and monitoring of oncological interventions MRI guided HIFU MRI guided Linear Accelerator Image guided Chemotherapy

# Applications of Focused Ultrasound



- MR-HIFU for Image Guided, Local Drug Delivery
  - Extravasation
  - Membrane permeabilization
  - Triggered drug release from nanocarriers

# **Blood Brain Barrier (BBB)**



- The primary hurdle to the use of drugs in the central nervous system for most small molecule agents and <u>all</u> large molecule agents
- Methods developed to bypass the BBB are invasive, non-targeted and/or require the development of new drugs



#### **Focused Ultrasound and Microbubbles: BBB opening**



Benoit Larrat et al ISMRM 2011

# Applications of Focused Ultrasound



- MR-HIFU for Image Guided, Local Drug Delivery and Gene
  - Extravasation
  - Membrane permeabilization
  - Triggered drug release from nanocarriers

### Low Temperature Heat Sensitive liposomes





Heat adds permeability / extravasation



Leaky tumor vessels



Cargo deployed @ 39-42 deg

Courtesy Mark Dewhirst, Duke University

# **Co-release of MRI contrast agents from liposomes visualized with T<sub>1</sub>-maps**





### **Present indications Cancer Therapy**



|         | distant | CTV | GTV |
|---------|---------|-----|-----|
| Chemo   | +       | +   | -   |
| RT      | -       | ++  | -/+ |
| Surgery |         | -/+ | +   |



### **Development MR-HIFU and MR-LINAC**







### Centre for Image Guided Oncological Interventions (CIGOI)



MR-LINAC MRI guided brachytherapy MR-HIFU





HDR robotic brachytherapy



**MRI** linac

# **Summary**



- MRI guidance of RadioTherapy and MR guided HIFU will set the next stage in high-precision tumor therapy
- Synergy in development (motion descriptors, target tracking)
- MR-LINAC will be the next standard-of-care in RadioTherapy
- MR-HIFU offers many complementary features and may be added to the Surgical, RT and Chemo therapies
- MR-HIFU may lead to MR guided Drug Delivery



#### Imaging Division, UMCU; Pharmaceutical Sciences UU

Jan Lagendijk, Marco van Vulpen, Bas Raaijmakers, Baudouin Denis de Senneville, Mario Ries, Clemens Bos, Anna Yudina, Wilbert Bartels, Gert Storm, Maurice van den Bosch, Willem Mali et al

#### **Philips Healthcare**

Charles Mougenot, Max Köhler, Sham Sokka and the Helsinki team

#### **Financial support**

European Union (Project SonoDrugs), CTMM project s VOLTA and HIFU-CHEM, ERC project Sound Pharma





