

Imagerie et spectroscopie de fluorescence par excitation non radiative

comment s'affranchir de la limite de diffraction

<u>Rodolphe Jaffiol</u>, Cyrille Vézy, Marcelina Cardoso Dos Santos

> LNIO, UTT, Troyes NanoBioPhotonics group http://lnio.utt.fr

> > 1

Motivations :

Fluorescence nano-imaging

nanoscale spectroscopy nano-FCS

FCS : Fluorescence Correlation Spectroscopy

State of the art

Nat. Methods 3 (2006) 793

畿

objectives

The technique:

<u>The goal</u> : local illumination with conventional microscope ?

- based on a new design of the substrate
 - compatible with conventional techniques of observation in biology such as: phase contrast, DIC...

thin film of Quantum dots (Qdots) in PMMA (thickness ≈10nm)

"monolayer" of Qdots

 \rightarrow The concept:

The illumination of the sample will not be done directly by the laser, but through a Förster non-radiative energy transfer (FRET) from the QDots to dyes

FRET
Taux de transfert:
$$k_{Förster} = \frac{1}{\tau_D} \left(\frac{R_0}{R}\right)^6 \propto \frac{\Phi_D}{\tau_D} \frac{I_R}{R^6}$$

Abs

b

b

b

b

c

b

c

c

 \rightarrow Dépendence en $R^{-6} \rightarrow$ forte sélectivité spatiale

R₀ : distance de Förster (efficacité de transfert de 50%)

Qdots advantages

 high photo-stability in regards to photobleaching

important stoke shift

definitively eliminates the autofluorescence of cells and Raman scattering of water...

avoids the direct excitation of the acceptor (Alexa647)

FCS in nano-volume: motivations

Limitations of "conventional FCS" (based on confocal setup) :

→ V_{eff} ≈ 0.2 - 1 μm³

 \rightarrow Concentration working range : sub-nM to \approx 50nM

→ Use of ultra pure solvents (> background) ultra purified water, PBS for in vivo observation...

Motivations: extend the concentration working range to µM or higher

FCS: fluorescence Correlation Spectroscopy

FCS : autocorrelation of the collected fluorescence signal F(t) emitted from dye molecules diffusing through the confocal volume

FCS in a confined volume

The confocal microscope:

Laser power @ 405nm : ≈100 nW

FCS at high concentrations

The effective observation volume @ 405nm:
V_{eff} = 0.62±0,03 aL (attolitre)

 \rightarrow ≈ 700 times smaller than confocal one (@ 632.8nm)

(@ 488 nm: V_{eff} = 2.15±0,05 aL)

strong reduction of V_{eff} : allows a concentration working range in FCS up to 10 μ M

Application to cell adhesion

- PMMA totally biocompatible for cell culture
- PMMA is hydrophobic \rightarrow perfect for cell adhesion

Cell spreading on a surface is associated with important functional changes relevant to survival, proliferation, migration processes... of cells.

The specific junction between cell and surface takes place at the plasma membrane level.

→ the functional units of adhesive contact include multiprotein complexes (integrins, FAKs...) linked to actin filaments.

cell migration

movie :

MDCKII cells @37°C DIC (x60, 0N=1.45) 146 c 109 μm²

Cell adhesion

Images of adhesion areas (MCF-7 human breast cancer cells)

in red scale: FRET illumination image in grey scale: DIC picture

Cell adhesion

 \rightarrow towards a dynamic view of cell adhesion:

Conclusions

We propose a new scheme for local illumination, based on non-radiative energy transfer

 \rightarrow strong reduction of the excitation depth (\approx 10 nm)

This new illumination scheme was employed to observe cell adhesion

P. Winckler, R. Jaffiol, J. Plain & P. Royer, Nonradiative Excitation Fluorescence: Probing Volumes Down to the Attoliter Range, J. Phys Chem. Letters vol 1 (2010) p 2451-2454

Thank you for your attention !