

3D BONE CELLS QUANTIFICATION FROM 3D MICRO-CT IMAGES

P.Dong^{1,2}, S.Haupert³, P-J.Gouttenoire^{1,2}, C.Olivier^{1,2}, F. Peyrin^{1,2}

¹ CREATIS, Inserm, U1044; CNRS, UMR5220; INSA-Lyon; Université Lyon 1 ; Université de Lyon

² European Synchrotron Radiationi Ficility 38043 Grenoble

³ LIP, CNRS UMR 7623; UMPC Univ Paris 6, 75005 Paris

Background

2

over 200 million women have osteoporosis

Image: The second se

Silent disease

- Not fully understood
- Difficult to predict in early stage

Background

3

Osteocytes

- The most numerous bone cells
- Fundamental role in bone remodeling
- Lacuno-canalicular network (LCN)
 - Encapsulating the osteocytes

Imaging

- Deeply embedded in bone matrix
- Highly complex network
- Lacunae density ~ 20000 / mm³
- □ Canaliculi : diam. ~ 100-500 nm

State of the arts

4

- 2D imaging methods
 - Optical microscopy, SEM, TEM ...
 - Drawbacks : sensitive to slice cutting, manual quantification
- 3D imaging methods
 - Confocal microscopy [Sugawara 2005]
 - X-ray Nano-CT [Van Hove 2009]
 - Synchrotron X-ray CT [Peyrin, 1998] [Thomas, 2010]

Purpose of the work

Limitations:

Image quality

Lack of statistics on 3D descriptors

• Aim of the work :

- propose an automated method based on synchrotron radiation microcomputed tomography (SR-µCT) to quantify the distribution of the 3D morphology of osteocytes lacuna properties
- Application to female femoral cortical bone.

Material and methods

6

- Synchrotron micro-CT at ESRF
 - 3D parallel beam micro-CT, ESRF, Grenoble [Salomé, MedPhys, 1999]

- Advantages
 - High spatial resolution
 - High intensity
 - Parallel beam
 - Monochromatic beam

from 10µm down to 0.3 µm high signal—to-noise ratio no image magnification no beam hardening

Material and methods

7

Samples

Human cortical bone: femur,

- Number:12 Samples,
- Image Acquisition conditions
 Voxel size: 1.4µm, FOV: 2.9×2.9×1.4mm³
 Energy: 25KeV, Projections: 3000
- 3D image analysis
 - Segmentation
 - Extraction of 3D descriptors
 - Challenges : Image size 2048×2048×1024

Large population of cells: $10^{5} \sim 10^{6}$

Sex: Female Age: 79

Reconstructed image

Segmentation and labeling of lacuna

Lacunae Descriptors

9

Moment based method

$$M(O_n) = \begin{pmatrix} \mu_{200} & \mu_{110} & \mu_{101} \\ \mu_{110} & \mu_{020} & \mu_{011} \\ \mu_{101} & \mu_{011} & \mu_{002} \end{pmatrix}$$

$$\mu_{pqr} = \sum_{(x,y,z)\in O_n} (x-\bar{x})^p \cdot (y-y)^q \cdot (z-\bar{z})^r$$

Volume

 μ_{000} : zero–th order moment

Axes lengths

Orientation

Anisotropy

$$L_1 \quad L_2 \quad L_3$$

$$V_1(\theta_1, \varphi_1) = \begin{pmatrix} \cos \theta_1 \sin \varphi_1 \\ \sin \theta_1 \sin \varphi_1 \\ \cos \varphi_1 \end{pmatrix}$$

$$L_1(O_n)/L_2(O_n) \text{ and } L_1(O_n)/L_3(O_n)$$

Lacunae Descriptors

10

- Intrinsic Volumes
 - The intrinsic volumes are important characteristic functions serving as a basis of object features
- Efficient computation

3D Crofton formula

$$\frac{1}{2}V_{3-k}(X_n) = \int_{\mathcal{L}^k} \int_{\perp_L} \chi(X_n \cap (L+y)) d\lambda_{\perp_L}(y) d\mu(L),$$

$$p_{X_n}^k(L)$$
D iscretized Crofton formula

$$\hat{V}_{3-k}(X_n) = 2a^{3-k} \sum_{\ell=0}^{\nu} v_{\ell}^{(k)} h_{\ell}(X_n)$$

128

32

64

Surface Mean curvature Eurler Number SMI $Lc.S(X_n) = 2\widehat{V}_2(X_n)$ $Lc.M(X_n) = \pi \widehat{V}_1(X_n)$ $Lc.\chi(X_n) = \widehat{V}_0(X_n)$ $Lc.f_{SMI}(X_n) = 12Lc.V(X_n)Lc.M(X_n)/Lc.S(X_n)^2$

Artifacts elimination

11

- Artifacts:
 - Ring artifacts
 - Micro cracks
 - Clustered and ill-shaped lacunae
 - Fragments...
- Elimination Criterion:
 - Volume size
 - Anisotropy: Length/Width
 - Mean curvature
 - Euler number
- Validation
 - "Manual" segmentation
 - Measurement of errors

50µm

Lacunae Descriptors : results

12

Application to 12 samples

TABLE 1 MEAN VALUES OF 12 SAMPLES

	Descriptors	Mean±std	Descriptors	Mean±std
13000 lacunae /sample data	N.Lc	12953	Lc.L1 (µm)	18.82 ± 4.75
	$BV(mm^3)$	0.62	Lc.L2 (µm)	9.27 ± 2.04
	BV/TV (%)	90.2%	Lc.L3 (µm)	4.79±1.03
	$N.Lc/BV(mm^{-3})$	20693.89	Lc.L1/Lc.L2	2.14 ± 0.76
Fast quantification	$Lc.V (\mu m^3)$	405.81±145.79	Lc.L1/Lc.L3	4.12±1.37
	Lc.S (μ m ²)	334.51±92.76	Lc.M	0.078
~ 20 seconds for each data	τ	92.8%	Lc.f _{SMI}	0.0033

- Fast quantification
 - \sim 20 seconds for e
 - □ ~ 700 objects/s

Conclusion & Perspective

13

Conclustion:

- Automated method to extract direct 3D characteristics of the osteocyte lacunae geometry from 3D SR-µCT images at the micrometer scale.
- Unbiased estimation of the lacunae parameters compared to 2D evaluation.
- Efficient analysis over large populations.
- Statistical results in agreement with existing reports.
- Provide biologically relevant data to get a better understanding of the role of osteocytes in bone diseases.

Perspective:

Deliver automated method for 3D descriptors on canaliculi network

